Towards formally secure compilation of
verified F* programs against
unverified ML contexts

Cezar-Constantin Andrici, Danel Ahman, Catalin Hritcu,

Guido Martinez, Abigail Pribisova, Exequiel Rivas, Théo Winterhalter

-

maxesanesmertvre [l UNIVERSITY or TARTU @ Microsoft Jeen &zzda—

Proof-oriented language F* offers strong guarantees

We annotate the code with
refinement types and

pre- and post- condltlons/

Web Specification
C Server (/\: “responds to every request”

e

The F* type checker verifies
if the code satisfies the annotations.

Written in F*, extracted to other languages

e EverCrypt
Verified cryptographic provider
erife
C Code C part of Mozilla Firefox, the Linux
Q kernel, the Wireguard VPN.

F*
OCaml g—?
Verified Unverified
C: Code N — Code

Mixing verified code with unverified code can be problematic

Verified
C 8252 G trusted

Unverified

Verified
Code

Code

)

Unsound & Insecure

Towards secure compilation of
terminating higher-order 10 programs

O End-to-end proofs

e
(2 "G @ Proof of security
X i
D . . *
F* pq Fully mechanized in F
STLC +10 ®
Verified :
(Goce X Ltttz
S e

SCIO*: a verified secure compilation framework
for verified 10 programs (Andrici et al. POPL'24)

Q End-to-end proofs
Verified
(5 o (- X
Q @ Proof of security
Converts refinements and 1 *’J‘* Fully mechanized in F*
pre-post conditions to dynamic
checks
— Q Adds a reference
monitor

Verified Unverified
C: Coqe C:: N Code

F*

STLC +10

Verifying extraction end-to-end is challenging

let prog lib : io unit =

let msg = read () in Shallow embedding
let res = lib msg in
write res

Compilation

Trace-producing semantics: One needs a meta program

[EVRead mSg; .o ; Evilrite res] If compilation uses/quotation,

then we have to verify it to

have an end-to-end proof

let comp_prog : exp = (requires meta theory of F*).

ELambda (
ELet ERead (

ELet (EApp (EVar 1) (EVar 0)) (Deep embedding
EWrite (EVar 0))))

We propose Relational Quotation

Relational quotation involves a special typing relation and a meta program.

We define a typing relation for the subset of F* we want to compile:

type typing : TI':typ env » a:Type » (eval env I » a) » Type =
Qfalse : I':typ env -» typing T bool (A - false)
QVaroe : I':typ _env » a:Type »
typing (extend a I') a (A o » hd o)
QvarsS .o
QLambda : I':typ env » a:Type » b:Type -
body:(eval env (extend a T) » b) ~»
typing (extend a I') b body -
typing I' (a » b) (A o x » body (push ¢ x))

To support the 1o monad, we define two mutually recursive relations following the typing
rules of fine-grain call-by-value (P.B. Levy et al. 2003).

The typing derivation captures the program's quotation

Shallow embedding

let prog 1lib : io unit =
let msg = read () in
let res = 1lib msg in
write res

Typing derivation

let tyj prog : typing empty ((string -» io string) - io unit) prog =
QLambda (
QLet QRead (
QLet (QApp QVarl Qvare) (
QWrite QVare)))

Compiler model

> Meta program

Shallow embedding Typing derivation
let prog lib : io unit = let tyj prog : typing empty _ prog =
let msg = read () in QLambda (
let res = 1ib msg in QLet QRead (
write res QLet (QApp QVarl QVare) (
QWrite Qvare)))

Compilation

\// ('// Deep embeddin
O End-to-end proof P g v
let comp_prog : exp =
ELambda (

ELet ERead (
ELet (EApp (EVar 1) (EVar 0)) (
EWrite (EVar 0))))

10

The compiler satisfies

Robust Relational Hyperproperty Preservation (RrHP)

Strongest criterion of Abate et al. (CSF’19). Stronger than full abstraction.
Compilation preserves:

o Observational equivalence

o Noninterference

o Trace properties

Proof using a cross language logical relation:
o Asymmetric relation: relates shallow to deep embeddings
o Proof done recursively on the typing derivation

No need for the meta theory of F*.

11

Towards secure compilation of
terminating higher-order 10 programs

O End-to-end proofs

G e
(YCoder dereation Proof of security
2 i
. ‘\,1"* Fully mechanized in F*
Shallow Embedding '
Deep Embedding
(STLC+IO) 52
Verified .
(Goce X Uiz
e

Cezar Andrici, MPI-SP: cezar.andrici@mpi-sp.org 12

