
Towards formally secure compilation of
verified F★programs against
unverified ML contexts

Cezar-Constantin Andrici, Danel Ahman, Cătălin Hriţcu,

Guido Martínez, Abigail Pribisova, Exequiel Rivas, Théo Winterhalter



Specification
“responds to every request”

2

⊨
satisfies

Web
Server
Web
Server

We annotate the code with
refinement types and
pre- and post-conditions

The F★ type checker verifies
if the code satisfies the annotations.

Proof-oriented language F★ offers strong guarantees



3

Verified
Code

⋈Verified
Code

Unverified
Code

F★

OCaml

Written in F★, extracted to other languages

EverCrypt
cryptographic provider

part of Mozilla Firefox, the Linux
kernel, the Wireguard VPN.



4

Verified
Code

⋈Verified
Code

Unverified
Code

F★

OCaml

Mixing verified code with unverified code can be problematic

trusted

Unsound & Insecure



5

Verified
Code

⋈Verified
Code

Unverified
Code

F★

STLC + IO

Towards secure compilation of
terminating higher-order IO programs

End-to-end proofs

Proof of security

Fully mechanized in F★



6

Verified
Code

Unverified
Code

F★

STLC + IO

Verified
Code

Unverified
Code

Unverified
Code

⋈
⋈SCIO★: a verified secure compilation framework

for verified IO programs (Andrici et al. POPL'24)

Converts refinements and
pre-post conditions to dynamic

checks

?

End-to-end proofs

Proof of security

Fully mechanized in F★

Adds a reference
monitor



Trace-producing semantics:
[EvRead msg; …………………… ; EvWrite res]

let prog lib : io unit =

Verifying extraction end-to-end is challenging

let prog lib : io unit =
let msg = read () in

let res = lib msg in

write res

7

let comp_prog : exp =
ELambda (
ELet ERead (
ELet (EApp (EVar 1) (EVar 0)) (
EWrite (EVar 0))))

Compilation

Shallow embedding

Deep embedding

One needs a meta program

If compilation uses quotation,
then we have to verify it to
have an end-to-end proof
(requires meta theory of F★).



We propose Relational Quotation

8

type typing : Γ:typ_env → a:Type → (eval_env Γ → a) → Type =
| Qfalse : Γ:typ_env → typing Γ bool (λ _ → false)
| QVar0 : Γ:typ_env → a:Type →

typing (extend a Γ) a (λ σ → hd σ)
| QVarS : ...
| QLambda : Γ:typ_env → a:Type → b:Type →

body:(eval_env (extend a Γ) → b) →
typing (extend a Γ) b body →
typing Γ (a → b) (λ σ x → body (push σ x))

We define a typing relation for the subset of F★ we want to compile:

Relational quotation involves a special typing relation and a meta program.

To support the io monad, we define two mutually recursive relations following the typing
rules of fine-grain call-by-value (P.B. Levy et al. 2003).



The typing derivation captures the program's quotation

9

let tyj_prog : typing empty ((string → io string) → io unit) prog =

QLambda (

QLet QRead (

QLet (QApp QVar1 QVar0) (

QWrite QVar0)))

let prog lib : io unit =
let msg = read () in

let res = lib msg in

write res

Typing derivation

Shallow embedding



let comp_prog : exp =
ELambda (
ELet ERead (
ELet (EApp (EVar 1) (EVar 0)) (
EWrite (EVar 0))))

Compiler model

let prog lib : io unit =
let msg = read () in

let res = lib msg in

write res

10

let tyj_prog : typing empty _ prog =
QLambda (

QLet QRead (

QLet (QApp QVar1 QVar0) (

QWrite QVar0)))

Shallow embedding

Deep embedding

Typing derivation
Meta program

Compilation

End-to-end proof



The compiler satisfies

Robust Relational Hyperproperty Preservation (RrHP)

● Strongest criterion of Abate et al. (CSF’19). Stronger than full abstraction.
● Compilation preserves:

○ Observational equivalence
○ Noninterference
○ Trace properties

● Proof using a cross language logical relation:
○ Asymmetric relation: relates shallow to deep embeddings
○ Proof done recursively on the typing derivation

● No need for the meta theory of F★.

11



12

Verified
Code

⋈Verified
Code

Unverified
Code

Shallow Embedding

Deep Embedding
(STLC+IO)

Towards secure compilation of
terminating higher-order IO programs

End-to-end proofs

Proof of security

Fully mechanized in F★

Cezar Andrici, MPI-SP: cezar.andrici@mpi-sp.org

Typing
derivation


