
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

Towards formally secure compilation of verified F★
programs against unverified ML contexts

(Extended Abstract)

Cezar-Constantin Andrici1 Danel Ahman2 Cătălin Hriţcu1 Guido Martínez3
Abigail Pribisova1,4 Exequiel Rivas5 Théo Winterhalter6

1MPI-SP, Bochum, Germany 2University of Tartu, Estonia 3Microsoft Research, Redmond, WA, USA
4MPI-SWS, Saarbrücken, Germany 5Tallinn University of Technology, Estonia 6Inria Saclay, France

Weareworking towards a formally secure compilation frame-
work to compile verified F★ programs to an ML language.
The framework, itself written and verified in F★, aims to
compile verified F★ programs and link them with unverified
ML programs securely, so that any unverified code cannot
inadvertently or maliciously break the internal invariants of
the verified code. In previous work on this project we have
built formally secure compilation frameworks [4, 5] between
shallowly embedded subsets of F★—i.e., we used shallow em-
beddings not only for the verified code (which is standard in
F★) but also for the unverified code. To compile further to
OCaml, we relied on F★’s extraction mechanism, which is,
however, unverified. In this extended abstract, we present
ongoing work on extending our framework with a formally
secure compilation step to an ML language deeply embedded
in F★, thus achieving end-to-end security guarantees.
This is challenging, since compiling to a deeply embed-

ded ML language generally involves quotation, which is a
meta-program taking a shallowly embedded program and re-
turning a deep embedding of it. If compilation uses quotation,
then end-to-end verification would involve a lot of complex
meta theory, including verifying quotation—proof that was
started for Rocq, but never finished.1 For our goal of building
an end-to-end secure compiler for F★ this approach is a non-
starter because there is not enough formalized meta theory
for F★ and such a formalization would be very challenging,
since F★ has many verification features that go beyond stan-
dard type theory and also a much larger core than Rocq.

1 Relational quotation
Instead of using quotation, we propose relational quotation,
a technique inspired from relational compilation [11, 12] and
work on reflection via canonical structures [8]. Relational
quotation involves a user-defined unary relation on arbitrary
F★ values that carves out the subset of the host language
that represents the shallow embedding. A derivation of the
relation stands both as a quotation of a program, and as a
proof that it is the quotation of that program, which eliminates
the necessity of a formalized meta theory.

1Verifying quoting inMetaRocq: https://github.com/MetaRocq/metarocq/blob/coq-
8.16/quotation/theories/README.md

For intuition, here we present a simplified relation C for
Booleans, defined as an inductive relation:
type C : #a:Type→ a→ Type =
| Cfalse : C false
| Ctrue : C true
| CIf : #a:Type→ #cond:bool→ #b1:a→ #b2:a→

C cond→C b1 →C b2 →
C (if cond then b1 else b2)

To see how this simple relation C works, let us take the
simple program p1 and manually quote it by defining p1C.
let p1 = if true then false else true
let p1C : C p1 = CIf Ctrue Cfalse Ctrue

With this relation, we see clearly the quotation of p1 (i.e.,
CIf Ctrue Cfalse Ctrue). We can obtain a deep embedding by
recursively defining a projection on the derivation of the
relation.

The difference between standard quotation and relational
quotation is that the latter constructs a program of type 𝛼

that gets unified with the program we are quoting. In other
words, the derivation constructs a program and F★’s typing
ensures that it is a correct derivation of the program we
are quoting—thus, eliminating the necessity for additional
meta-theoretic proofs to verify quotation.

Automation. Above we obtained C p1 manually, but this
was just for intuition. On the one hand, we can write a meta
program that automatically tries to build a derivation. On
the other hand, based on our experiments in F★, however,
we did not have to write our own meta program, but we
just defined C as a type class and used type class res-
olution! So we can actually quote program p1 by writing
let p1C : C p1 = solve, where solve is the F★ tactic that calls
type class resolution. It will be interesting to see if type class
resolution scales with adding more features to the language.

2 Secure Compilation
We define compilation as the meta program that takes a pro-
gram of type 𝛼 and returns the deep embedding together with
a proof. We are proving the same compilation criterion as in
our previous work [4, 5], Robust Relational Hyperproperty

1

https://github.com/MetaRocq/metarocq/blob/a50b36cc7688df75f4932d7242a889c5df8e5bea/quotation/theories/README.md
https://github.com/MetaRocq/metarocq/blob/a50b36cc7688df75f4932d7242a889c5df8e5bea/quotation/theories/README.md


111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

Andrici et al.

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

Preservation (RrHP), the strongest criterion of Abate et al.
[1], and also stronger than full abstraction. RrHP ensures
that compilation preserves observational equivalence, non-
interference and trace properties. We think such a strong
criterion should hold for our compiler to an ML language
after adding more interesting effects (such as state and Input-
Output) because F★ itself is designed in the tradition of the
ML family of languages.
Compilation first tries to derive the quotation of the pro-

gram, this way checking if the program is part of our shallow
embedding, and if it succeeds, it constructs the deeply em-
bedded ML program and the proof. The deeply embedded
program is untyped because the shallow embeddings may
use dependent types. The proof, however, states that the
deeply embedded program can be securely linked with arbi-
trary syntactically typed contexts.

We prove RrHP using one more relation, a cross-language
logical relation between shallowly embedded and deeply em-
bedded programs. This logical relation is asymmetric, since
it relates shallowly embedded programs to deeply embedded
ones, however, its definition is still quite standard though.
The proof that a shallowly embedded program and its deep
embedding are in the logical relation is done recursively on
the derivation of the relation used to do quotation.

The current status is that we produce proofs for compiling
simply typed pure F★ programs and that are safe to link them
with syntactically typed pure ML programs.

3 Towards end-to-end proofs
To be able to connect with our previous work, and be able
to compile verified effectful programs, we are working on
the following extensions.
Refinement types. Refinements are a core feature of F★

and they allow one to have functions with pre- and post-
conditions. The challenge with quoting refined programs is
that the relation used to do the quotation is bottom-up, it
constructs a program of type 𝛼 , and then it unifies the new
program with the one we are quoting. This means that when
we are quoting a function with a pre- and a post-condition,
the relation constructs the function and it also constructs
the proof that the post-condition is satisfied. Intuitively, con-
structing the proof should be guided by the proof done for
the quoted program, however, F★ does not save the proofs
done for refinements, thus, we do not know how to do it (e.g.,
if one has an x refined with p x, there is no way to project
out the proof of p x). This means that one has to reprove that
the quoted program satisfies the refinements. Hopefully, this
can be done by the SMT. Myreen and Owens [11] face the
same problem when synthesising CakeML programs from
HOL functions using relational compilation.
Monadic shallow embeddings. In our previous work, we

represented verified stateful and IO-performing programs
using shallow embeddings that use monads. While we did

not explore compiling such programs yet, previous work on
relational compilation shows that such a thing is possible.
Most notably, the work of Abrahamsson et al. [2] shows how
to synthesize CakeML programs from HOL functions that
embed references, exceptions, and IO operations.

Dependent types. We think this technique could be scaled
to quotation of dependently typed programs. For that, we
would probably need amutually recursive definition between
a relation for types and one for expressions. A general defi-
nition would require first-class universe polymorphism (as
in Agda) which F★ does not have. Since our goal is to link
with ML programs, maybe one can limit the definition to a
limited set of universes.

While working on these extensions, one would have to
also deal with two challenges of relational quotation (inher-
ited from relational compilation) about completness: (1) one
is able to relate only what is expressible by a user defined
relation (e.g., patter matching is difficult to do in a general
way), (2) finding the derivation is done using tactics that may
loop or fail.

4 Related work
To our knowledge, there is no existing formal secure compiler
for a proof-oriented languages (e.g., Rocq, Dafny, HOL), but
there are verified compilers for Rocq andHOL that we discuss
next.

Verified compilation of Rocq. Forster et al. [7] present a
verified compiler for Gallina to Malfunction (an intermediate
untyped language of OCaml). Their compiler is based on the
existing MetaRocq [13] project that formalizes Rocq in itself.
They define compilation as a series of steps, one of them
being quotation, which is trusted. They prove a realizabil-
ity relation that guarantees that the extracted untyped code
operationally behaves as the initial Rocq program. They com-
pile Rocq without any special step for shallowly embedded
code using monads, something we would like to do together
with a proof of security.

Similar to Forster et al. [7], there is CertiCoq [3] and Con-
Cert [6], two compilers for Rocq that target C and blockchain
languages. Their compilers are partially verified.
Œuf [10] formalizes a subset of Gallina and provides a

verified compiler to Assembly code. They translate-validate
quotation to have an end-to-end correctness proof. To be
able to translate-validate, they require a computational de-
notation, which restricts what they can quote.

Relational compilation. Traditionally, compilation is de-
fined as a function from source programs to target programs.
Relational compilation treats compilation as a relation, which
now frees one to search for a target program so that ∃t. s R t.
The technique we present, relational quotation, is a variant

2



221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

Towards formally secure compilation of verified F★ programs against unverified ML contexts

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

of relational compilation specialized for the specific task of
doing quotation.

Our work is inspired by Pit-Claudel et al. [12] and Myreen
and Owens [11] who present how to do relational compila-
tion for Gallina and Isabelle HOL with support for programs
shallowly embedded using monads. Their focus is on prov-
ing correct compilation, while we focus on proving secure
compilation.
Pit-Claudel et al. [12] present a framework for relational

compilation designed for performance-critical applications.
The framework allows one to build a relational compiler in
an extensible and composable way. They show the versatility
of the framework by compiling a subset of Gallina to a low-
level imperative language.

CakeML. Abrahamsson et al. [2] show how starting from
a shallowly embedded program in Isabelle HOL one can
synthesize an equivalent CakeML program. CakeML [9] is
a subset of Standard ML that has a verified compiler that
can target ARMv6, ARMv8, x86-x64, MIPS-64, RISC-V and
Silver RSA architectures. They have an end-to-end proof of
correctness from the original program written in HOL to
the low level code that targets a specific architecture. The
synthesis they do, however, is a process that happens outside
of HOL: it is implemented in Standard ML and it produces
a deeply embedded program and a proof of correctness in
HOL. In our case, everything happens in F★. Even if CakeML
does not have a secure compiler, it will be interesting to see
if we can target one of the untyped intermediate languages
they have to reuse correct compilation.

References
[1] Carmine Abate, Roberto Blanco, Deepak Garg, Catalin Hritcu, Marco

Patrignani, and Jérémy Thibault. 2019. Journey Beyond Full Abstrac-
tion: Exploring Robust Property Preservation for Secure Compilation.
In 32nd IEEE Computer Security Foundations Symposium (CSF). IEEE,
256–271. doi:10.1109/CSF.2019.00025

[2] Oskar Abrahamsson, Son Ho, Hrutvik Kanabar, Ramana Kumar, Mag-
nus O. Myreen, Michael Norrish, and Yong Kiam Tan. 2020. Proof-
Producing Synthesis of CakeML from Monadic HOL Functions. Jour-
nal of Automated Reasoning (JAR) (2020). https://rdcu.be/b4FrU

[3] Abhishek Anand, Andrew Appel, Greg Morrisett, Zoe
Paraskevopoulou, Randy Pollack, Olivier Savary Belanger, Matthieu
Sozeau, and Matthew Weaver. 2017. CertiCoq: A verified compiler for
Coq. In 3rd Workshop on Coq for Programming Languages (CoqPL).
https://popl17.sigplan.org/details/main/9/CertiCoq-A-verified-
compiler-for-Coq

[4] Cezar-Constantin Andrici, Danel Ahman, Cătălin Hriţcu, Ruxandra
Icleanu, Guido Martínez, Exequiel Rivas, and Théo Winterhalter. 2025.
SecRef*: Securely Sharing Mutable References between Verified and
Unverified Code in F*. Proc. ACM Program. Lang. 9, ICFP, Article 253
(Aug. 2025), 31 pages. doi:10.1145/3747522

[5] Cezar-Constantin Andrici, Ştefan Ciobâcă, Catalin Hritcu, Guido
Martínez, Exequiel Rivas, Éric Tanter, and Théo Winterhalter. 2024.
Securing Verified IO Programs Against Unverified Code in F★. Proc.
ACM Program. Lang. 8, POPL (2024), 2226–2259. doi:10.1145/3632916

[6] Danil Annenkov, Mikkel Milo, Jakob Botsch Nielsen, and Bas Spit-
ters. 2022. Extracting functional programs from Coq, in Coq.

Journal of Functional Programming 32 (2022), e11. doi:10.1017/
S0956796822000077

[7] Yannick Forster, Matthieu Sozeau, and Nicolas Tabareau. 2024. Verified
Extraction from Coq to OCaml. Proc. ACM Program. Lang. 8, PLDI
(2024), 52–75. doi:10.1145/3656379

[8] Georges Gonthier, Beta Ziliani, Aleksandar Nanevski, and Derek
Dreyer. 2013. How to make ad hoc proof automation less ad hoc.
Journal of Functional Programming 23, 4 (2013), 357–401.

[9] Ramana Kumar,Magnus O.Myreen,Michael Norrish, and Scott Owens.
2014. CakeML: a verified implementation of ML. In The 41st Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, POPL. ACM, 179–192. doi:10.1145/2535838.2535841

[10] Eric Mullen, Stuart Pernsteiner, James R. Wilcox, Zachary Tatlock,
and Dan Grossman. 2018. Œuf: minimizing the Coq extraction TCB.
In Proceedings of the 7th ACM SIGPLAN International Conference on
Certified Programs and Proofs (Los Angeles, CA, USA) (CPP 2018).
Association for Computing Machinery, New York, NY, USA, 172–185.
doi:10.1145/3167089

[11] Magnus O. Myreen and Scott Owens. 2014. Proof-producing Trans-
lation of Higher-order logic into Pure and Stateful ML. Journal of
Functional Programming (JFP) 24, 2-3 (May 2014), 284–315. doi:10.
1017/S0956796813000282

[12] Clément Pit-Claudel, Jade Philipoom, Dustin Jamner, Andres Erbsen,
and Adam Chlipala. 2022. Relational compilation for performance-
critical applications: extensible proof-producing translation of func-
tional models into low-level code. In PLDI ’22: 43rd ACM SIGPLAN
International Conference on Programming Language Design and Imple-
mentation, San Diego, CA, USA, June 13 - 17, 2022, Ranjit Jhala and Isil
Dillig (Eds.). ACM, 918–933. doi:10.1145/3519939.3523706

[13] Matthieu Sozeau, Yannick Forster, Meven Lennon-Bertrand, Jakob
Nielsen, Nicolas Tabareau, and Théo Winterhalter. 2025. Correct and
Complete Type Checking and Certified Erasure for Coq, in Coq. J.
ACM 72, 1, Article 8 (Jan. 2025), 74 pages. doi:10.1145/3706056

3

https://doi.org/10.1109/CSF.2019.00025
https://rdcu.be/b4FrU
https://popl17.sigplan.org/details/main/9/CertiCoq-A-verified-compiler-for-Coq
https://popl17.sigplan.org/details/main/9/CertiCoq-A-verified-compiler-for-Coq
https://doi.org/10.1145/3747522
https://doi.org/10.1145/3632916
https://doi.org/10.1017/S0956796822000077
https://doi.org/10.1017/S0956796822000077
https://doi.org/10.1145/3656379
https://doi.org/10.1145/2535838.2535841
https://doi.org/10.1145/3167089
https://doi.org/10.1017/S0956796813000282
https://doi.org/10.1017/S0956796813000282
https://doi.org/10.1145/3519939.3523706
https://doi.org/10.1145/3706056

	1 Relational quotation
	2 Secure Compilation
	3 Towards end-to-end proofs
	4 Related work
	References

