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Towards formally secure compilation of verified F*
programs against unverified ML contexts
(Extended Abstract)
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We are working towards a formally secure compilation frame-
work to compile verified F* programs to an ML language.
The framework, itself written and verified in F*, aims to
compile verified F* programs and link them with unverified
ML programs securely, so that any unverified code cannot
inadvertently or maliciously break the internal invariants of
the verified code. In previous work on this project we have
built formally secure compilation frameworks [4, 5] between
shallowly embedded subsets of F*—i.e., we used shallow em-
beddings not only for the verified code (which is standard in
F*) but also for the unverified code. To compile further to
OCaml, we relied on F*’s extraction mechanism, which is,
however, unverified. In this extended abstract, we present
ongoing work on extending our framework with a formally
secure compilation step to an ML language deeply embedded
in F*, thus achieving end-to-end security guarantees.

This is challenging, since compiling to a deeply embed-
ded ML language generally involves quotation, which is a
meta-program taking a shallowly embedded program and re-
turning a deep embedding of it. If compilation uses quotation,
then end-to-end verification would involve a lot of complex
meta theory, including verifying quotation—proof that was
started for Rocq, but never finished.! For our goal of building
an end-to-end secure compiler for F* this approach is a non-
starter because there is not enough formalized meta theory
for F* and such a formalization would be very challenging,
since F* has many verification features that go beyond stan-
dard type theory and also a much larger core than Rocgq.

1 Relational quotation

Instead of using quotation, we propose relational quotation,
a technique inspired from relational compilation [11, 12] and
work on reflection via canonical structures [8]. Relational
quotation involves a user-defined unary relation on arbitrary
F* values that carves out the subset of the host language
that represents the shallow embedding. A derivation of the
relation stands both as a quotation of a program, and as a
proof that it is the quotation of that program, which eliminates
the necessity of a formalized meta theory.

Werifying quoting in MetaRocq: https://github.com/MetaRocq/metarocq/blob/coq-

8.16/quotation/theories/README.md
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For intuition, here we present a simplified relation C for
Booleans, defined as an inductive relation:

type C : #a:Type — a — Type =

| Cfalse : C false

| Ctrue : C true

| CIf : #a:Type — #cond:bool — #b1:a — #b2:a —
Ccond >Cb1—-Cbh2—
C (if cond then b1 else b2)

To see how this simple relation C works, let us take the
simple program p1 and manually quote it by defining p1C.

let p1 = if true then false else true
let p1C : C p1 = CIf Ctrue Cfalse Ctrue

With this relation, we see clearly the quotation of p1 (i.e.,
CIf Ctrue Cfalse Ctrue). We can obtain a deep embedding by
recursively defining a projection on the derivation of the
relation.

The difference between standard quotation and relational
quotation is that the latter constructs a program of type «
that gets unified with the program we are quoting. In other
words, the derivation constructs a program and F*’s typing
ensures that it is a correct derivation of the program we
are quoting—thus, eliminating the necessity for additional
meta-theoretic proofs to verify quotation.

Automation. Above we obtained C p1 manually, but this
was just for intuition. On the one hand, we can write a meta
program that automatically tries to build a derivation. On
the other hand, based on our experiments in F*, however,
we did not have to write our own meta program, but we
just defined C as a type class and used type class res-
olution! So we can actually quote program p1 by writing
let p1C : C p1 = solve, where solve is the F* tactic that calls
type class resolution. It will be interesting to see if type class
resolution scales with adding more features to the language.

2 Secure Compilation

We define compilation as the meta program that takes a pro-
gram of type a and returns the deep embedding together with
a proof. We are proving the same compilation criterion as in
our previous work [4, 5], Robust Relational Hyperproperty
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Preservation (RrHP), the strongest criterion of Abate et al.
[1], and also stronger than full abstraction. RrHP ensures
that compilation preserves observational equivalence, non-
interference and trace properties. We think such a strong
criterion should hold for our compiler to an ML language
after adding more interesting effects (such as state and Input-
Output) because F* itself is designed in the tradition of the
ML family of languages.

Compilation first tries to derive the quotation of the pro-
gram, this way checking if the program is part of our shallow
embedding, and if it succeeds, it constructs the deeply em-
bedded ML program and the proof. The deeply embedded
program is untyped because the shallow embeddings may
use dependent types. The proof, however, states that the
deeply embedded program can be securely linked with arbi-
trary syntactically typed contexts.

We prove RrHP using one more relation, a cross-language
logical relation between shallowly embedded and deeply em-
bedded programs. This logical relation is asymmetric, since
it relates shallowly embedded programs to deeply embedded
ones, however, its definition is still quite standard though.
The proof that a shallowly embedded program and its deep
embedding are in the logical relation is done recursively on
the derivation of the relation used to do quotation.

The current status is that we produce proofs for compiling
simply typed pure F* programs and that are safe to link them
with syntactically typed pure ML programs.

3 Towards end-to-end proofs

To be able to connect with our previous work, and be able
to compile verified effectful programs, we are working on
the following extensions.

Refinement types. Refinements are a core feature of F*
and they allow one to have functions with pre- and post-
conditions. The challenge with quoting refined programs is
that the relation used to do the quotation is bottom-up, it
constructs a program of type «, and then it unifies the new
program with the one we are quoting. This means that when
we are quoting a function with a pre- and a post-condition,
the relation constructs the function and it also constructs
the proof that the post-condition is satisfied. Intuitively, con-
structing the proof should be guided by the proof done for
the quoted program, however, F* does not save the proofs
done for refinements, thus, we do not know how to do it (e.g.,
if one has an x refined with p x, there is no way to project
out the proof of p x). This means that one has to reprove that
the quoted program satisfies the refinements. Hopefully, this
can be done by the SMT. Myreen and Owens [11] face the
same problem when synthesising CakeML programs from
HOL functions using relational compilation.

Monadic shallow embeddings. In our previous work, we
represented verified stateful and IO-performing programs
using shallow embeddings that use monads. While we did
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not explore compiling such programs yet, previous work on
relational compilation shows that such a thing is possible.
Most notably, the work of Abrahamsson et al. [2] shows how
to synthesize CakeML programs from HOL functions that
embed references, exceptions, and IO operations.

Dependent types. We think this technique could be scaled
to quotation of dependently typed programs. For that, we
would probably need a mutually recursive definition between
a relation for types and one for expressions. A general defi-
nition would require first-class universe polymorphism (as
in Agda) which F* does not have. Since our goal is to link
with ML programs, maybe one can limit the definition to a
limited set of universes.

While working on these extensions, one would have to
also deal with two challenges of relational quotation (inher-
ited from relational compilation) about completness: (1) one
is able to relate only what is expressible by a user defined
relation (e.g., patter matching is difficult to do in a general
way), (2) finding the derivation is done using tactics that may
loop or fail.

4 Related work

To our knowledge, there is no existing formal secure compiler
for a proof-oriented languages (e.g., Rocq, Dafny, HOL), but
there are verified compilers for Rocq and HOL that we discuss
next.

Verified compilation of Rocq. Forster et al. [7] present a
verified compiler for Gallina to Malfunction (an intermediate
untyped language of OCaml). Their compiler is based on the
existing MetaRocq [13] project that formalizes Rocq in itself.
They define compilation as a series of steps, one of them
being quotation, which is trusted. They prove a realizabil-
ity relation that guarantees that the extracted untyped code
operationally behaves as the initial Rocq program. They com-
pile Rocq without any special step for shallowly embedded
code using monads, something we would like to do together
with a proof of security.

Similar to Forster et al. [7], there is CertiCoq [3] and Con-
Cert [6], two compilers for Rocq that target C and blockchain
languages. Their compilers are partially verified.

Euf [10] formalizes a subset of Gallina and provides a
verified compiler to Assembly code. They translate-validate
quotation to have an end-to-end correctness proof. To be
able to translate-validate, they require a computational de-
notation, which restricts what they can quote.

Relational compilation. Traditionally, compilation is de-
fined as a function from source programs to target programs.
Relational compilation treats compilation as a relation, which
now frees one to search for a target program so that 3t. s R t.
The technique we present, relational quotation, is a variant
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of relational compilation specialized for the specific task of
doing quotation.

Our work is inspired by Pit-Claudel et al. [12] and Myreen
and Owens [11] who present how to do relational compila-
tion for Gallina and Isabelle HOL with support for programs
shallowly embedded using monads. Their focus is on prov-
ing correct compilation, while we focus on proving secure
compilation.

Pit-Claudel et al. [12] present a framework for relational
compilation designed for performance-critical applications.
The framework allows one to build a relational compiler in
an extensible and composable way. They show the versatility
of the framework by compiling a subset of Gallina to a low-
level imperative language.

CakeML. Abrahamsson et al. [2] show how starting from
a shallowly embedded program in Isabelle HOL one can
synthesize an equivalent CakeML program. CakeML [9] is
a subset of Standard ML that has a verified compiler that
can target ARMv6, ARMvS, x86-x64, MIPS-64, RISC-V and
Silver RSA architectures. They have an end-to-end proof of
correctness from the original program written in HOL to
the low level code that targets a specific architecture. The
synthesis they do, however, is a process that happens outside
of HOL: it is implemented in Standard ML and it produces
a deeply embedded program and a proof of correctness in
HOL. In our case, everything happens in F*. Even if CakeML
does not have a secure compiler, it will be interesting to see
if we can target one of the untyped intermediate languages
they have to reuse correct compilation.
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