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The F★ type checker verifies

if the code satisfies the annotations.

Proof-oriented language F★ offers strong guarantees



Verification in F★ scales to realistic applications
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EverParse
framework for secure parsers

EverCrypt
cryptographic provider

part of Windows Hyper-Vpart of Mozilla Firefox, the Linux 

kernel, the Wireguard VPN. 
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Mixing verified code with unverified code can be problematic
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Solution: enforce the assumptions

dynamically and statically 

Global specification
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Solution: enforce the assumptions
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Solution: enforce the assumptions
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SecRef★: a verified secure compilation framework

for the sound verification of stateful partial programs

⋈
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Contributions

SecRef★ is secure
Mechanized proof of Robust Relational Hyperproperty

Preservation.

SecRef★ is verified
Verified compilation and linking. Proof of soundness. 

Sound verification of partial programs



Heap

secret ↦ 42
r' ↦ 0
r ↦ r'

let prog (unverified_lib : ref (ref int) → unit → unit) =
let secret : ref int = alloc 42 in
let r : ref (ref int) = alloc (alloc 0) in
let cb = unverified_lib r in
r := alloc 1;
cb ();
assert (!secret == 42)

It is tricky to track which references are shared
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Sharing is transitive and permanent

Looking at what references get directly passed is not enough

`

`

`

`

`

Heap

secret ↦ 42
r' ↦ ?
r ↦ ?

Heap

secret ↦ 42
r' ↦ ?
r ↦ r''
r'' ↦ 1

Heap

secret ↦ 42?
r' ↦ ?
r ↦ ?
r'' ↦ ?

// what references get modified here?



Overaproximating the shared references using labels

Labeling mechanism that is encoded in F★ and computationally irrelevant:

• Fresh references are labeled as private.

• Dynamic operation to label a reference as shareable.

Rules:

• Once shareable, forever shareable.

• Shareable points only to shareable.

• Only shareable references can be passed between verified-unverified code.
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• modifies only shareable references

Tracking shared references using a labeling mechanism
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let prog (unverified_lib : ref (ref int) → unit → unit) =
let secret : ref int = alloc 42 in
let r : ref (ref int) = alloc (alloc 0) in
label_shareable (!r); label_shareable r;
let cb = unverified_lib r in
let r'' = alloc 1 in label_shareable r''; r := r'';
cb ();
assert (!secret == 42)

Exta pre- and post-conditions: 

• accepts and returns only shareable references

Extra pre-condition:
If r is shareable,

then r'' has to be shareable.

`

`

`

`

`

`

Heap

ghost lmap↦{

}

Heap

secret ↦ 42

ghost lmap↦{
secret=private,

}

Heap

secret ↦ 42
r' ↦ 0
r ↦ r'

ghost lmap↦{
secret=private,
r'=private,
r=private,

}

Heap

secret ↦ 42
r' ↦ 0
r ↦ r'

ghost lmap↦{
secret=private,
r'=shareable,
r=shareable,

}

Heap

secret ↦ 42
r' ↦ ?
r ↦ ?

ghost lmap↦{
secret=private,
r'=shareable,
r=shareable,

}

Heap

secret ↦ 42
r' ↦ ?
r ↦ r''
r'' ↦ 1

ghost lmap↦{
secret=private,
r'=shareable,
r=shareable,
r''=shareable,

}

Heap

secret ↦ 42
r' ↦ ?
r ↦ ?
r'' ↦ ?

ghost lmap↦{
secret=private,
r'=shareable,
r=shareable,
r''=shareable,

}

`



The verified code assumes a strong type
containing refinements and pre-post conditions
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unverified_lib : 
r:ref (ref int) → LR (...)
(requires (λ h0 → is_shareable r ∧

is_even (sel (sel r h0)) h0))
(ensures (λ h0 x h1 → modifies_only_shareable h0 h1 ∧

is_shareable x ∧
sel r h0 == sel r h1))



The types contain the assumptions
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Intermediate type
refinements and pre-post conditions convert to dynamic checks
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unverified_lib : 
r:ref (ref int) → LR (...)
(requires (λ h0 → is_shareable r ∧

is_even (sel (sel r h0)) h0))
(ensures (λ h0 x h1 → modifies_only_shareable h0 h1 ∧

is_shareable x ∧
sel r h0 == sel r h1))



Intermediate type
refinements and pre-post conditions convert to dynamic checks

14

unverified_lib : 
r:ref (ref int) → LR (...)
(requires (λ h0 → is_shareable r))
(ensures (λ h0 x h1 → modifies_only_shareable h0 h1 ∧

is_shareable x))



The types contain the assumptions
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The unverified code has a weak type
no concrete refinements and pre-post conditions
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unverified_lib : 
r:ref (ref int) → LR (...)
(requires (λ h0 → is_shareable r))
(ensures (λ h0 x h1 → modifies_only_shareable h0 h1 ∧

is_shareable x))



The unverified code has a weak type
no concrete refinements and pre-post conditions
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unverified_lib : 
r:ref (ref int) → LR (...)
(requires (λ h0 → 𝜑 r))
(ensures (λ h0 x h1 → modifies_only_shareable h0 h1 ∧

𝜑 x))



The unverified code has a weak type
no concrete refinements and pre-post conditions

16

unverified_lib : 
r:ref (ref int) → LR (...)
(requires (λ h0 → 𝜑 r))
(ensures (λ h0 x h1 → h0 ≼ h1 ∧

𝜑 x))



The unverified code has a weak type
no concrete refinements and pre-post conditions
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unverified_lib : 𝜑:_ → ≼:_ → ... →
r:ref (ref int) → LR (...)
(requires (λ h0 → 𝜑 r))
(ensures (λ h0 x h1 → h0 ≼ h1 ∧

𝜑 x))

Full representation of unverified code and why 

it is appropriate in the paper.

By instantiating with the previous predicates, we get that
unverified code modifies only shareable references.
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Contributions

SecRef★ is secure
Mechanized proof of Robust Relational Hyperproperty

Preservation.

SecRef★ is verified
Verified compilation and linking. Proof of soundness.

Sound verification of partial programs



Robust Relational Hyperproperty Preservation (RrHP)

● Strongest criterion of Abate et al. (CSF’19). Stronger than full abstraction.

● Compilation preserves:

○ Observational equivalence

○ Noninterference

○ Trace properties

● Usually very hard to prove, but our proof is by construction:

○ Shallow embeddings of the source and target language

○ Specialized design of the higher-order contracts

18
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Contributions

SecRef★ is secure
Mechanized proof of Robust Relational Hyperproperty

Preservation.

SecRef★ is verified
Verified compilation and linking.

Sound verification of partial programs



More in the paper

The shallow embedding: a Dijkstra Monad!
Monadic representation for Monotonic State + proof of soundness.

Labeling mechanism encoded in Monotonic State.
More labels: encapsulated references.

Proofs about SecRef★

Proofs for both cases of who has initial control.

Syntactic representation of unverified code.

Case study of a simple cooperative multi-threading scheduler
Written, verified, compiled and secured against unverified threads using SecRef★.

Cezar Andrici, MPI-SP: cezar.andrici@mpi-sp.org 19
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