ICFP 2025

SecRef*: Securely Sharing Mutable References
between Verified and Unverified Code in F*

Cezar-Constantin Andrici, Danel Ahman , Catalin Hritcu,

Ruxandra Icleanu, Guido Martinez, Exequiel Rivas, Théo Winterhalter

=~

) mexesanesssnoee l UNIVERSITY or TARTU g8 Microsoft @8 FERRES™ FReH Lrzda—

Proof-oriented language F* offers strong guarantees

We annotate the code with
refinement types and

pre- and post-conditions/

Stateful Specification
Program “valid data structures”

e

The F* type checker verifies
if the code satisfies the annotations.

Verification in F* scales to realistic applications

EverCrypt EverParse
cryptographic provider framework for secure parsers
part of Mozilla Firefox, the Linux part of Windows Hyper-V

kernel, the Wireguard VPN.

Mixing verified code with unverified code can be problematic

e

N

Verified
C Code

assumes the
specification

Unverified h Specification

gode “valid data structur
qgy
malicious sa tisfies

No guarantee that the assumptions are satisfied

Unsound & Insecure

Solution: enforce the assumptions
dynamically and statically

enforce the
assumptions

S o - ™\

Verified "
Code Dnverified h Global specification
g;)gcyje relation between initial and
final state

Q malicious satisfies

Solution: enforce the assumptions
dynamically and statically

stateful programs that can dynamically allocate

Q A first-order ML mutable references

Verified :
Col(;e Dnverified h Global specification
ﬁ;’gcy’e relation between initial and
final state

Q malicious salisfies

dynamic sharing of references

Solution: enforce the assumptions
dynamically and statically

Statically proved that modifies ONLY shared references

Q / is a property of unverified code

Verified Unverified h Global specification
Code Code relation between initial and

buggy

|

dynamically enforce assumptions
about shared references

Solution: enforce the assumptions
dynamically and statically

YV unverified code

e

Verified Unverified h Global specification
Code Code relation between initi
buggy final state

Q malicious satisfies

SecRef*: a verified secure compilation framework
for the sound verification of stateful partial programs

Shallowly embedded
Verified — terminating higher-order
Code <

C: stateful programs

QU

Linking

Compiler
adds higher-order contracts

Unverified
Code

Verified
C: Code

Q =S

Contributions

Sound verification of partial programs

SecRef* is verified
Verified compilation and linking. Proof of soundness.

SecRef* is secure

Mechanized proof of Robust Relational Hyperproperty
Preservation.

It is tricky to track which references are shared

let prog (unverified lib : ref (ref int) - unit -» unit) =
let secret : ref int = alloc 42 in
let r : ref (ref int) = alloc (alloc @) in
let cb = unverified 1lib r in
r := alloc 1;
cb ();
assert (!secret == 42)

Sharing is transitive and permanent

Looking at what references get directly passed is not enough

Heap
secret » 427

r' - ?
r - ?

r\II H?

Overaproximating the shared references using labels

Labeling mechanism that is encoded in F* and computationally irrelevant:
* Fresh references are labeled as private.
« Dynamic operation to label a reference as shareable.

Rules:

* Once shareable, forever shareable.

 Shareable points only to shareable.

« Only shareable references can be passed between verified-unverified code.

Tracking shared references using a labeling mechanism

Exta pre- and post-conditions:

* accepts and returns only shareable references

 modifies only shareable references
J

let prog (unverified 1lib : ref (ref int) - unit - unit) =

let secret : ref int = alloc 42 in

let r : ref (ref int) = alloc (alloc @) in

label shareable (!r); label shareable r;

let cb = unverified lib r in

let r'' = alloc 1 in label shareable r''; r = r''";

cb ();

assert (!secret == 420 }
Extra pre-condition:
If r is shareable,

then r' ' has to be shareable.

Heap
secret » 42

r' e ?

r e ?

r'' e ?

ghost lmapw—{
secret=private,
r'=shareable,
r=shareable,
r''=shareable,

The verified code assumes a strong type
containing refinements and pre-post conditions

unverified 1ib :
r:ref (ref int) » LR (...)
(requires (A hy » is _shareable r A
is _even (sel (sel r hy)) hy))
(ensures (A hy, x h; » modifies only shareable h, h; A
is shareable x A
sel r hy == sel r hy))

11

The types contain the assumptions

G

(-

Verified
code strong type

o |~ |

Compi Ier

intermediate type

adds higher-order contracts

C

Verified
Code Unverified
Code
L|nk|ng -

12

Intermediate type
refinements and pre-post conditions convert to dynamic checks

unverified 1ib :
r:ref (ref int) » LR (...)
(requires (A hy » is shareable r A
is _even (sel (sel r hy)) hy))
(ensures (A hy, x h; > modifies_only_ shareable h, h; A
is shareable x A
sel r hy == sel r hl)ﬂ

13

Intermediate type
refinements and pre-post conditions convert to dynamic checks

unverified 1lib :
r:ref (ref int) » LR (...)
(requires (A hy » is _shareable r))
(ensures (A hy, x h; » modifies only shareable h, h; A
is_shareable x))

14

The types contain the assumptions

G

(-

Verified
code strong type

o |~ |

Compi Ier

intermediate type «—

weak type

adds higher-order contracts

C

Verified
Code Unverified
Code
L|nk|ng -

15

The unverified code has a weak type
no concrete refinements and pre-post conditions

unverified 1ib :
r:ref (ref int) - LR (...) .9
(requires (A hy, » is shareable r))
(ensures (A hy, x h; » modifies only shareable h, h; A

is_shareable x))
Nz

16

The unverified code has a weak type
no concrete refinements and pre-post conditions

unverified 1ib :
r:ref (ref int) » LR (...)
(requires (A hy » @ r)) L=

(ensures (A h, x h; » modifies only shareable heg hy A
@ X))

16

The unverified code has a weak type
no concrete refinements and pre-post conditions

unverified 1ib :
r:ref (ref int) » LR (...)
(requires (A hy » @ r))
(ensures (A hy X hy » hy <h; A
@ X))

16

The unverified code has a weak type
no concrete refinements and pre-post conditions

By instantiating with the previous predicates, we get that
/ unverified code modifies only shareable references.

unverified 1ib : ¢: - <: - ...~
r:ref (ref int) » LR (...)
(requires (A hy » @ r))
(ensures (A hy x hy » hy <h; A
® X))

Full representation of unverified code and why
it is appropriate in the paper.

16

Q =k

Contributions

Sound verification of partial programs

SecRef* is verified
Verified compilation and linking. Proof of soundness.

SecRef* is secure

Mechanized proof of Robust Relational Hyperproperty
Preservation.

17

Robust Relational Hyperproperty Preservation (RrHP)

e Strongest criterion of Abate et al. (CSF’'19). Stronger than full abstraction.
e Compilation preserves:

o Observational equivalence

o Noninterference

o Trace properties

e Usually very hard to prove, but our proof is by construction:
o Shallow embeddings of the source and target language

o Specialized design of the higher-order contracts

18

Q =k

Contributions

Sound verification of partial programs

SecRef* is verified
Verified compilation and linking.

SecRef* is secure

Mechanized proof of Robust Relational Hyperproperty
Preservation.

18

More in the paper
The shallow embedding: a Dijkstra Monad!

Monadic representation for Monotonic State + proof of soundness.

Labeling mechanism encoded in Monotonic State.
More labels: encapsulated references.

Proofs about SecRef*
Proofs for both cases of who has initial control.
Syntactic representation of unverified code.

Case study of a simple cooperative multi-threading scheduler
Written, verified, compiled and secured against unverified threads using SecRef*.

Cezar Andrici, MPI-SP: cezar.andrici@mpi-sp.org 19

	Slide 1: SecRef★: Securely Sharing Mutable References between Verified and Unverified Code in F★
	Slide 2: Specification “valid data structures”
	Slide 3: Verification in F★ scales to realistic applications
	Slide 4: Mixing verified code with unverified code can be problematic
	Slide 5: Solution: enforce the assumptions dynamically and statically
	Slide 6: Solution: enforce the assumptions dynamically and statically
	Slide 7: Solution: enforce the assumptions dynamically and statically
	Slide 8: Solution: enforce the assumptions dynamically and statically
	Slide 9: SecRef★: a verified secure compilation framework for the sound verification of stateful partial programs
	Slide 10
	Slide 11: It is tricky to track which references are shared
	Slide 12: Overaproximating the shared references using labels
	Slide 13: Tracking shared references using a labeling mechanism
	Slide 14: The verified code assumes a strong type containing refinements and pre-post conditions
	Slide 15: The types contain the assumptions
	Slide 16: Intermediate type refinements and pre-post conditions convert to dynamic checks
	Slide 17: Intermediate type refinements and pre-post conditions convert to dynamic checks
	Slide 18: The types contain the assumptions
	Slide 19: The unverified code has a weak type no concrete refinements and pre-post conditions
	Slide 21: The unverified code has a weak type no concrete refinements and pre-post conditions
	Slide 22: The unverified code has a weak type no concrete refinements and pre-post conditions
	Slide 23: The unverified code has a weak type no concrete refinements and pre-post conditions
	Slide 24
	Slide 25: Robust Relational Hyperproperty Preservation (RrHP)
	Slide 26
	Slide 27

