
SecRef★: Securely Sharing Mutable References 

between Verified and Unverified Code in F★

Cezar-Constantin Andrici, Danel Ahman , Cătălin Hriţcu, 

Ruxandra Icleanu, Guido Martínez, Exequiel Rivas, Théo Winterhalter 



Specification

“valid data structures”

2

⊨
satisfies

Web 

Server

Stateful

Program

We annotate the code with

refinement types and 
pre- and post-conditions

The F★ type checker verifies

if the code satisfies the annotations.

Proof-oriented language F★ offers strong guarantees



Verification in F★ scales to realistic applications

3

EverParse
framework for secure parsers

EverCrypt
cryptographic provider

part of Windows Hyper-Vpart of Mozilla Firefox, the Linux 

kernel, the Wireguard VPN. 



Web 

Server

Verified

Code
Unverified

Code
library

larger code base

Mixing verified code with unverified code can be problematic

Specification

“valid data structures”

4

⊨
satisfies

assumes the 

specification

No guarantee that the assumptions are satisfied

Unsound & Insecure

Unverified

Code
buggy

malicious



Solution: enforce the assumptions

dynamically and statically 

Global specification

relation between initial and 
final state

5

⊨
satisfies

enforce the 

assumptions

Web 

Server

Verified

Code
Unverified

Code
library

larger code base

Unverified

Code
buggy

malicious



Solution: enforce the assumptions

dynamically and statically 

Global specification

relation between initial and 
final state

5

⊨
satisfies

dynamic sharing of references

stateful programs that can dynamically allocate

first-order ML mutable references

Web 

Server

Verified

Code
Unverified

Code
buggy

malicious



Solution: enforce the assumptions

dynamically and statically 

Global specification

relation between initial and 
final state

5

⊨
satisfies

Web 

Server

Verified

Code

H
ig

h
e

r-
o
rd

e
r

c
o
n

tr
a

c
ts

Statically proved that modifies ONLY shared references

is a property of unverified code

dynamically enforce assumptions 

about shared references

Unverified

Code
buggy

malicious



Solution: enforce the assumptions

dynamically and statically 

Global specification

relation between initial and 
final state

5

⊨
satisfies

Web 

Server

Verified

Code

H
ig

h
e

r-
o
rd

e
r

c
o
n

tr
a

c
ts

∀ unverified code

Unverified

Code
buggy

malicious



SecRef★: a verified secure compilation framework

for the sound verification of stateful partial programs

⋈

6

Verified
Code

Verified
Code

Linking

Unverified
Code

Compiler

adds higher-order contracts

Shallowly embedded

terminating higher-order

stateful programs



7

Contributions

SecRef★ is secure
Mechanized proof of Robust Relational Hyperproperty

Preservation.

SecRef★ is verified
Verified compilation and linking. Proof of soundness. 

Sound verification of partial programs



Heap

secret ↦ 42
r' ↦ 0
r ↦ r'

let prog (unverified_lib : ref (ref int) → unit → unit) =
let secret : ref int = alloc 42 in
let r : ref (ref int) = alloc (alloc 0) in
let cb = unverified_lib r in
r := alloc 1;
cb ();
assert (!secret == 42)

It is tricky to track which references are shared

8

Sharing is transitive and permanent

Looking at what references get directly passed is not enough

`

`

`

`

`

Heap

secret ↦ 42
r' ↦ ?
r ↦ ?

Heap

secret ↦ 42
r' ↦ ?
r ↦ r''
r'' ↦ 1

Heap

secret ↦ 42?
r' ↦ ?
r ↦ ?
r'' ↦ ?

// what references get modified here?



Overaproximating the shared references using labels

Labeling mechanism that is encoded in F★ and computationally irrelevant:

• Fresh references are labeled as private.

• Dynamic operation to label a reference as shareable.

Rules:

• Once shareable, forever shareable.

• Shareable points only to shareable.

• Only shareable references can be passed between verified-unverified code.

9



• modifies only shareable references

Tracking shared references using a labeling mechanism

13

let prog (unverified_lib : ref (ref int) → unit → unit) =
let secret : ref int = alloc 42 in
let r : ref (ref int) = alloc (alloc 0) in
label_shareable (!r); label_shareable r;
let cb = unverified_lib r in
let r'' = alloc 1 in label_shareable r''; r := r'';
cb ();
assert (!secret == 42)

Exta pre- and post-conditions: 

• accepts and returns only shareable references

Extra pre-condition:
If r is shareable,

then r'' has to be shareable.

`

`

`

`

`

`

Heap

ghost lmap↦{

}

Heap

secret ↦ 42

ghost lmap↦{
secret=private,

}

Heap

secret ↦ 42
r' ↦ 0
r ↦ r'

ghost lmap↦{
secret=private,
r'=private,
r=private,

}

Heap

secret ↦ 42
r' ↦ 0
r ↦ r'

ghost lmap↦{
secret=private,
r'=shareable,
r=shareable,

}

Heap

secret ↦ 42
r' ↦ ?
r ↦ ?

ghost lmap↦{
secret=private,
r'=shareable,
r=shareable,

}

Heap

secret ↦ 42
r' ↦ ?
r ↦ r''
r'' ↦ 1

ghost lmap↦{
secret=private,
r'=shareable,
r=shareable,
r''=shareable,

}

Heap

secret ↦ 42
r' ↦ ?
r ↦ ?
r'' ↦ ?

ghost lmap↦{
secret=private,
r'=shareable,
r=shareable,
r''=shareable,

}

`



The verified code assumes a strong type
containing refinements and pre-post conditions

11

unverified_lib : 
r:ref (ref int) → LR (...)
(requires (λ h0 → is_shareable r ∧

is_even (sel (sel r h0)) h0))
(ensures (λ h0 x h1 → modifies_only_shareable h0 h1 ∧

is_shareable x ∧
sel r h0 == sel r h1))



The types contain the assumptions

12

strong type

intermediate type

⋈

Verified
Code

Verified
Code

Linking

Unverified
Code

Compiler

adds higher-order contracts



Intermediate type
refinements and pre-post conditions convert to dynamic checks

13

unverified_lib : 
r:ref (ref int) → LR (...)
(requires (λ h0 → is_shareable r ∧

is_even (sel (sel r h0)) h0))
(ensures (λ h0 x h1 → modifies_only_shareable h0 h1 ∧

is_shareable x ∧
sel r h0 == sel r h1))



Intermediate type
refinements and pre-post conditions convert to dynamic checks

14

unverified_lib : 
r:ref (ref int) → LR (...)
(requires (λ h0 → is_shareable r))
(ensures (λ h0 x h1 → modifies_only_shareable h0 h1 ∧

is_shareable x))



The types contain the assumptions

15

weak type

strong type

intermediate type

⋈

Verified
Code

Verified
Code

Linking

Unverified
Code

Compiler

adds higher-order contracts



The unverified code has a weak type
no concrete refinements and pre-post conditions

16

unverified_lib : 
r:ref (ref int) → LR (...)
(requires (λ h0 → is_shareable r))
(ensures (λ h0 x h1 → modifies_only_shareable h0 h1 ∧

is_shareable x))



The unverified code has a weak type
no concrete refinements and pre-post conditions

16

unverified_lib : 
r:ref (ref int) → LR (...)
(requires (λ h0 → 𝜑 r))
(ensures (λ h0 x h1 → modifies_only_shareable h0 h1 ∧

𝜑 x))



The unverified code has a weak type
no concrete refinements and pre-post conditions

16

unverified_lib : 
r:ref (ref int) → LR (...)
(requires (λ h0 → 𝜑 r))
(ensures (λ h0 x h1 → h0 ≼ h1 ∧

𝜑 x))



The unverified code has a weak type
no concrete refinements and pre-post conditions

16

unverified_lib : 𝜑:_ → ≼:_ → ... →
r:ref (ref int) → LR (...)
(requires (λ h0 → 𝜑 r))
(ensures (λ h0 x h1 → h0 ≼ h1 ∧

𝜑 x))

Full representation of unverified code and why 

it is appropriate in the paper.

By instantiating with the previous predicates, we get that
unverified code modifies only shareable references.



17

Contributions

SecRef★ is secure
Mechanized proof of Robust Relational Hyperproperty

Preservation.

SecRef★ is verified
Verified compilation and linking. Proof of soundness.

Sound verification of partial programs



Robust Relational Hyperproperty Preservation (RrHP)

● Strongest criterion of Abate et al. (CSF’19). Stronger than full abstraction.

● Compilation preserves:

○ Observational equivalence

○ Noninterference

○ Trace properties

● Usually very hard to prove, but our proof is by construction:

○ Shallow embeddings of the source and target language

○ Specialized design of the higher-order contracts

18



18

Contributions

SecRef★ is secure
Mechanized proof of Robust Relational Hyperproperty

Preservation.

SecRef★ is verified
Verified compilation and linking.

Sound verification of partial programs



More in the paper

The shallow embedding: a Dijkstra Monad!
Monadic representation for Monotonic State + proof of soundness.

Labeling mechanism encoded in Monotonic State.
More labels: encapsulated references.

Proofs about SecRef★

Proofs for both cases of who has initial control.

Syntactic representation of unverified code.

Case study of a simple cooperative multi-threading scheduler
Written, verified, compiled and secured against unverified threads using SecRef★.

Cezar Andrici, MPI-SP: cezar.andrici@mpi-sp.org 19


	Slide 1: SecRef★: Securely Sharing Mutable References between Verified and Unverified Code in F★
	Slide 2: Specification “valid data structures”
	Slide 3: Verification in F★ scales to realistic applications
	Slide 4: Mixing verified code with unverified code can be problematic
	Slide 5: Solution: enforce the assumptions  dynamically and statically 
	Slide 6: Solution: enforce the assumptions  dynamically and statically 
	Slide 7: Solution: enforce the assumptions  dynamically and statically 
	Slide 8: Solution: enforce the assumptions  dynamically and statically 
	Slide 9: SecRef★: a verified secure compilation framework for the sound verification of stateful partial programs
	Slide 10
	Slide 11: It is tricky to track which references are shared
	Slide 12: Overaproximating the shared references using labels
	Slide 13: Tracking shared references using a labeling mechanism
	Slide 14: The verified code assumes a strong type containing refinements and pre-post conditions
	Slide 15: The types contain the assumptions
	Slide 16: Intermediate type refinements and pre-post conditions convert to dynamic checks
	Slide 17: Intermediate type refinements and pre-post conditions convert to dynamic checks
	Slide 18: The types contain the assumptions
	Slide 19: The unverified code has a weak type no concrete refinements and pre-post conditions
	Slide 21: The unverified code has a weak type no concrete refinements and pre-post conditions
	Slide 22: The unverified code has a weak type no concrete refinements and pre-post conditions
	Slide 23: The unverified code has a weak type no concrete refinements and pre-post conditions
	Slide 24
	Slide 25: Robust Relational Hyperproperty Preservation (RrHP)
	Slide 26
	Slide 27

