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Abstract. We propose a secure compilation chain for stati-
cally verified partial programs with IO. The source language
is a subset of F★ in which one can write and statically ver-
ify a partial IO program that interacts with its context via a
strongly-typed higher-order interface, which includes refine-
ment types as well as pre- and post-conditions that can talk
about past IO events. The target language is a subset of the
source in which the compiled program can be securely linked
with a context via a weakly-typed interface, without refine-
ment types or pre- and post-conditions. Compilation converts
the logical assumptions the program makes about the context
to runtime checks, while linking instruments the context by
adding a reference monitor to soundly enforce a global safety
property. In addition to soundness, we proved in F★ that our
secure compilation chain satisfies by construction Robust Re-
lational Hyperproperty Preservation, which is the strongest
secure compilation criterion of Abate et al. (CSF’19).

In the proof-oriented language F★ [13] one can write a
program and statically verify that it satisfies a specification.
The problem is that in such languages one needs to statically
verify the whole program to guarantee the specification. This
is often unrealistic, since in practice one uses third-party
libraries that have a weakly-typed interface—i.e., without
specifications—because they are written in the languages
to which F★ extracts (e.g., OCaml or C). Even if such a li-
brary with a weakly-typed interface was (re)written in F★, to
be able to use it one would have to strengthen its interface
either (1) by verifying the library, which if done statically
takes away the simplicity of using it, since static verifica-
tion in F★ involves significant user interaction and expertise,
or (2) by simply assuming the library respects the strongly-
typed interface, which is unsound. In this work we propose
to soundly strengthen the interface of the library by dynam-
ically verifying it.
Our compilation chain starts with a partial source pro-

gram with Input-Output (IO) (written in a subset of F★) that
interacts with its context via a strongly-typed higher-order
interface, which includes refinement types as well as pre-
and post-conditions that can talk about past IO events [2].
For example, a post-condition could specify that the con-
text should satisfy the safety property “it never opens the
file /etc/passwd”, or that the context returns an open file
descriptor.

To dynamically verify that the context satisfies safety prop-
erties we use runtime verification [4, 9, 12]. We instrument
the contex by adding a reference monitor that keeps as in-
ternal state a trace of each IO operation as it is happening
during the execution. We add the monitor by taking advan-
tage of the fact that the partial program and the context share
the IO operations they can perform, but we give them oper-
ations with different implementations during compilation
(for the program) and linking (for the context). The partial
program uses an implementation that executes the opera-
tion and then updates the monitor’s state, while the context
uses an implementation that first checks if a global property
𝜋 would be respected by the operation, and if so executes
it and then it updates the monitor’s state. For example, to
enforce that the context does not open the file /etc/passwd,
the global property 𝜋 would be defined as “block all Openfile
operations of /etc/passwd”.

To enforce additional logical assumptions of the returned
values of the context, we can take advantage of the trace that
the monitor keeps as state and add runtime checks during
compilation. For example, to verify that the context returns
an open file descriptor, we can look at the trace and check if
the file descriptor is the result of an Openfile operation and
that there is no Close operation in the meantime.

Below we start by presenting how our linking in the target
language enforces the safety property 𝜋 on each IO operation
by instrumenting the target context with a reference monitor.
We then explain how our compiler converts the additional
logical assumptions the program makes about the context
using refinement types and pre- and post-conditions to run-
time checks done at the (higher-order) boundary between
the program and the context.

Refinements and pre-post conditions. The source pro-
gram can make additional logical assumptions about the
context beyond just 𝜋 in the refinements and pre- and post-
conditions. When making an additional assumption, one has
to also hand-pick a sound dynamic approximation of it that
can be enforced at runtime if linked against a target context.
While one can make any assumption about the context, not
all of them have sound dynamic approximations that are
both precise and efficiently enforceable, thus it becomes a
design decision on what additional assumptions are made
and what dynamic approximations are picked.
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Our compiler from the source to the target language con-
sists only of one stage that converts the additional logical
assumptions into runtime checks using a wrapping tech-
nique strongly inspired by higher-order contracts [8]. For
this we define a way to export source values to the target,
and dually a way to import target values into the source;
where export and import are defined in terms of each other
based on the types of the values, which is needed for support-
ing higher-order interfaces. For example, when exporting
a value of refinement type, the refinement is simply erased.
When exporting a function type, the pre-condition is con-
verted into a runtime check, the arguments are imported, the
post-condition is erased, and the returned value is exported.
When importing a value to a refined type, a runtime check
is added to make sure that the refinement is satisfied. When
importing a function type, the arguments are exported, the
returned values are imported, the pre-condition is added,
and a runtime check is performed for the additional logical
assumption from the post-condition. These runtime checks
are added only at the interface between the partial-program
and the context.

Target language. Let 𝑃𝑇𝜋 be a partial target program and
𝐶𝑇 a target context, where we know that 𝑃𝑇𝜋 is expecting a
context that satisfies monitorable safety property 𝜋 (a special
kind of trace property) for its statical guarantees to hold, but
where we do not know whether 𝐶𝑇 satisfies it. Our target
linking instruments 𝐶𝑇 to add a monitor that dynamically
enforces property 𝜋 , thus 𝐶𝑇 becoming 𝐶𝑇

𝜋 .
The partial program 𝑃 and the context 𝐶 are interacting

computations that can perform IO. We represent IO compu-
tations using a free monad variant indexed by specifications
that can encode trace properties [2]. The actions of our free
monad include IO operations such as opening files, reading
from and writing to file descriptors, and closing file descrip-
tors. We denote the free monad indexed by specification with
IIO 𝛼 fl pre post, where IIO stands for instrumented IO, where
𝛼 is the return type, fl index is representing which IO actions
the computation can contain, pre is a precondition over the
history of events that must be satisfied to be able to call the
computation, and post is a post-condition over the result and
the trace produced by the current computation.

To model that the target context can be linked with any IO
implementation of the actions, we make the target context
flag polymorphic and 𝜋-polymorphic. In a first-order setting,
the type of the target context 𝐶𝑇 is:
fl:erased _→ 𝜋 :erased _→ acts 𝜋 fl→ 𝛼 → IIO 𝛽 fl⊤ 𝜋 where
fl is the flag (labeled with erased making it unusable in the
computation), acts fl 𝜋 is the signature of the IO actions in
IIO that use only actions under flag fl and that satisfy 𝜋 , and
𝛼 and 𝛽 are the argument and return type of the context.
Because 𝐶𝑇 is flag polymorphic, it can not use directly the
IO actions and it has to use the implementation passed as
argument. Because 𝐶𝑇 is 𝜋-polymorphic, it can also accept
implementations with any specification, and by instantiating

it with a 𝜋 and with a implementation of the IO actions that
satisfy 𝜋 , 𝐶𝑇 also will satisfy 𝜋 .
In a first-order setting, we can take the complete type of

𝑃𝑇𝜋 as (𝛼 → IIO 𝛽 AllActions⊤ 𝜋 ) → IIO Z AllActions⊤⊤. Then,
target language linking is defined as a function application
𝐶𝑇 [𝑃𝑇𝜋 ] = 𝑃𝑇𝜋 𝐶𝑇

𝜋 ,

where 𝐶𝑇
𝜋 = 𝐶𝑇 AllActions 𝜋 (instrument io_acts 𝜋).

We can in fact generate the IO actions passed to the con-
text, because we can implement instrument above generically
in the IIOmonad. The IIOmonad has an extra action GetTrace
that returns the IO trace until now — this enables check-
ing the safety property 𝜋 dynamically before each IO call.
GetTrace is a type of reflection and is not part of io_acts. We
have set things up so that the source partial program and
context and the target context cannot call GetTrace directly.
Security criteria.We proved in F★ two security criteria

for our compilation chain. Using the notations of the previous
sections, we define compilation of the partial program as
follows:

𝑃𝑆𝜋 ↓= 𝜆 𝐶𝑇
𝜋 → (𝑃𝑆𝜋 (import 𝐶𝑇

𝜋 )) <: IIO Z AllActions ⊤ ⊤
Linking produces a whole program, about which we reason
using trace-producing semantics. We denote that a whole
program respects a safety property𝜓 with Beh(𝐶 [𝑃]) ⊆ 𝜓 .

1. Soundness. We first show that the compiled source pro-
gram linked with the target context respects the safety prop-
erty 𝜋 .

∀𝜋 𝑃𝑆𝜋 𝐶𝑇 . Beh(𝐶𝑇 [𝑃𝑆𝜋 ↓]) ⊆ 𝜋

Proof sketch. Linking produces an IIO 𝜋 computation, thus
soundness is ensured by F★ typing, which relies on the sound-
ness of the checks our reference monitor does. □

2. Robust Relational Hyperproperty Preservation (RrHP).We
show about the compilation chain that it robustly preserves
relational hyperproperties using the criterion RrHP, which is
the strongest secure compilation criterion of Abate et al. [1].

∀𝐶𝑇 . ∃𝐶𝑆
𝜋 . ∀𝜋 𝑃𝑆𝜋 . Beh(𝐶𝑇 [𝑃𝑆𝜋 ↓]) = Beh(𝐶𝑆

𝜋 [𝑃𝑆𝜋 ])

Proof sketch. To prove such a criterion, one has to create a
source context only from the target context by using back-
translation. In our case, we can define backtranslation like
this:

𝐶𝑇 ↑ = 𝜆 fl 𝜋 acts → import (𝐶𝑇 fl 𝜋 acts)
Our compiler and linker are designed so that we can prove

the following syntactic equality (by unfolding the definitions)
which makes the proof of the criterion immediate:

∀𝐶𝑇𝜋 𝑃𝑆𝜋 . 𝐶
𝑇 [𝑃𝑆𝜋 ↓] = 𝐶𝑇 ↑ [𝑃𝑆𝜋 ]

□

This secure compilation proof is basically by construction
and orders of magnitude simpler than most other proofs in
this space. This simplicity is possible since (1) our languages
are shallowly embedded in F★ and (2) we get backtranslation
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for free from the way we compile higher-order functions
(which is, as mentioned above, reminiscent of higher-order
contracts [8]).
Artifact. This extended abstract comes with an artifact

in F★ that contains a formalization of the ideas above.1 IO
computations are implemented using the Dijkstra Monad [10,
14] of Andrici et al. [2]. The artifact contains the compilation
chain and mechanized proofs of soundness and RrHP.
Future work. Our long term goal is to have a realistic

secure compilation chain from F★ to a safe subset of OCaml.
For this we need to extend our IIO Dijkstra Monad, which
now only supports the IO effect, with other OCaml effects
such as non-termination, exceptions, and state. As a case
study, we are working on a simple web server that supports
third-party plugins written in the target language.

Related work. Chen et al. [5] presented a framework to
enable Monitoring Oriented Programming (MOP) for soft-
ware development and analysis that builds on the Aspect
Oriented Programming (AOP). They also present an envi-
ronment [6] that implements their framework that enables
MOP for Java. In their framework, “monitors are automati-
cally synthesized from formal specifications and integrated
at appropriate places in the program”. It seems MOP can be
used to solve the same problem as us, but our work differs
from theirs in one major way. The MOP depends on the pow-
erful Java Virtual Machine with AOP enabled; AOP is well
developed in Java, but even though some work to bring this
paradigm to different languages exists, it does not seem to be
as well developed, therefore MOP, for now, is only possible
in Java. Our proposal does not depend on AOP, and in fact, it
can work with most languages, therefore our work is more
general.
Bader et al. [3] and Wise et al. [15] propose gradual pro-

gram verification to easily combine dynamic and static ver-
ification in the same language. The main difference is that
our work tries to give a model that combines dynamic and
static verification in a source and a target language.

Interoperability between trusted and untrusted code was
also studied by Sammler et al. [11], by showing the benefits
of low-level sandboxing. This method relies on affine types
and works great with the import/export mechanism used
generally in gradual typing. They have a similar notion of
exposing a wrapped version of the operation to the untrusted
side, that has runtime checks. But they discuss only robust
safety related to the memory model and they do not discuss
trace properties.
Dagand et al. [7] propose a dependent interoperability

framework that has a mechanism to export dependently-
typed programs to simply-typed languages. Their focus is on
type-safety between the languages, and they do not discuss
about the case in which the dependent-types are used to rea-
son about the behavior of the source program by using traces.

1http://github.com/andricicezar/fstar-io/tree/prisc-submission

We on the other hand, start from a source program typed
to satisfy trace properties and take care that the behavior is
preserved.
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