
 New transformation functions between F* effects:
➔ Effect ML can not have specification
➔ Effect ML is a safe subset of a Meta Language
➔ export - converts static pre-conditions to dynamic
checks
➔ import - enforces π on each IO operation
➔ Future work: extend IO with state and divergence

Gradual Enforcement of IO Trace Properties - Cezar Andrici
Advisors: Ştefan Ciobâcă, Cătălin Hriţcu, Guido Martínez, Exequiel Rivas, Éric Tanter

I. Static verification of IO
The IO Effect:
➔ Annotate functions with pre-/postconditions
➔ Trace is allocated and updated at runtime
➔ Enforces trace properties
➔ Parametric in the underlying primitive actions
➔ Primitives can throw exceptions

export fnc

import fnc π
IO a π ML a

Results
→ seamless interoperability between static and
dynamic checking of IO trace properties
→ seamless interoperability between verified
and unverified code
→ ongoing case study on how to extend a
verified web server with a ML-plugin mechanism.

val read : (fd:file_descr) → IO string
 (requires (λ trace → is_open fd trace))
 (ensures (λ msg lt → lt = [(Read,fd,msg)]))

Example. Primitive read

Build and verified in F* for
programs with input-output behavior

II. Gradual verification of IO
Extended primitives by using wrapping:
➔ Accept an extra precondition - π
➔ variants: static / mixed / dynamic enforcement
➔ Postconditions are enforced statically
➔ Future work: a more efficient representation of
the trace

III. Interoperability verified-unverified
➔ We can prove that the whole program respects π
➔ Only the plugin is monitored

let example1 () : IO string π =
 let fd = mixed_openfile π "secret.txt" in
 dynamic_close π fd;
 mixed_read π fd

Example. this does not statically verify, because fd is read
after it is closed (for any property π)

Safety Properties - π
Allows or blocks the current execution:
➔ bool function
➔ Future work: extract π from LTL formulas

let π trace next_operation : bool =
 match next_operation with

 | (Openfile, fnm) → fnm != "secret.txt"

 | _ → true

Example of a trace property

Motivation and problem. Modern web servers
are linked with unverified third-party plugins,
therefore they can have unintended behavior.
How can we offer guarantees about what
safety properties hold?

IO a π

ML a ML a

Web
Server
statically verified

Plugin
installs
malicious code

Library
steals secrets

val webserver : (int → IO int π) → IO unit π
val plugin : int → ML int

let main () : IO unit π =
 webserver (import plugin π)

(Openfile,"file.md",fd),(Read,fd,"abc"),(Close,fd,())

Example of a IO trace of a program that reads from a file

