
Verifying non-terminating
programs with IO in F*

Cezar-Constantin Andrici, Théo Winterhalter,

Cătălin Hriţcu, Exequiel Rivas

HOPE 2022

11 September 2022 1

Goal:
practical way to verify functional correctness for higher-order

non-terminating Input-Output programs

2

practical goal:
Verify a simple Web Server

3

Non-terminating, non-trivial IO trace properties

What to expect
1. We use F★, but the ideas are general;

2. Using monads to do verification:

○ of terminating programs;

○ of non-terminating programs;

3. We reason about non-terminating runs by using infinite traces.

4. To verify our Web Server, we mix verification of terminating and

non-terminating programs;

4

Why the proof-oriented programming language F★?

F★’s Advantages:

1. Write, specify and verify the program in the same language;

2. User-defined effects with specifications:

○ one effect for termination and one for possible non-termination;

○ hides the binds and returns;

3. Built-in support for verification of higher-order;

4. SMT based-automation.
5

(Swamy et al. POPL 2016)

How to verify
terminating programs

6

7

Program example: Echo
let echo (fd:file_descr) =
 let msg = read fd in
 write fd msg

Trace = sequence of IO events that occur during a specific run of the program

[ERead fd
1
 “Hello!”; EWrite (fd

1
,“Hello!”)]

8

About traces
let echo (fd:file_descr) =
 let msg = read fd in
 write fd msg

Trace = sequence of IO events that occur during a specific run of the program

[ERead fd
1
 “Hello!”; EWrite (fd

1
,“Hello!”)]

Example of trace properties:

∀ t. t terminates

9

About trace properties
let echo (fd:file_descr) =
 let msg = read fd in
 write fd msg

Trace = sequence of IO events that occur during a specific run of the program

[ERead fd
1
 “Hello!”; EWrite (fd

1
,“Hello!”)]

Example of trace properties:

∀ t. t terminates

∀ t. Ǝ msg. t = [ERead fd msg; EWrite (fd,msg)]
10

About trace properties
let echo (fd:file_descr) =
 let msg = read fd in
 write fd msg

Trace = sequence of IO events that occur during a specific run of the program

[ERead fd
1
 “Hello!”; EWrite (fd

1
,“Hello!”)]

Example of trace properties:

∀ t. t terminates

∀ t. Ǝ msg. t = [ERead fd msg; EWrite (fd,msg)]
11

About trace properties
let echo (fd:file_descr) =
 let msg = read fd in
 write fd msg

12

Specification of Echo
let echo (fd:file_descr) :
 IO unit
 (requires λ h → is_open fd h)
 (ensures λ h r t → Ǝ msg. t = [ERead fd msg; EWrite fd msg]) =
 let msg = read fd in
 write fd msg

let echo (fd:file_descr) :
 IO unit
 (requires λ h → is_open fd h)
 (ensures λ h r t → Ǝ msg. t = [ERead fd msg; EWrite fd msg]) =
 let msg = read fd in
 write fd msg

13

Echo - Effect

IO unit

let echo (fd:file_descr) :
 IO unit
 (requires λ h → is_open fd h)
 (ensures λ h r t → Ǝ msg. t = [ERead fd msg; EWrite fd msg]) =
 let msg = read fd in
 write fd msg

14

Echo - pre-condition

h

let echo (fd:file_descr) :
 IO unit
 (requires λ h → is_open fd h)
 (ensures λ h r t → Ǝ msg. t = [ERead fd msg; EWrite fd msg]) =
 let msg = read fd in
 write fd msg

15

Echo - pre-condition

is_open fd h

let echo (fd:file_descr) :
 IO unit
 (requires λ h → is_open fd h)
 (ensures λ h r t → Ǝ msg. t = [ERead fd msg; EWrite fd msg]) =
 let msg = read fd in
 write fd msg

16

Echo - post-condition

h r t

let echo (fd:file_descr) :
 IO unit
 (requires λ h → is_open fd h)
 (ensures λ h r t → Ǝ msg. t = [ERead fd msg; EWrite fd msg]) =
 let msg = read fd in
 write fd msg

17

Echo - post-condition

Ǝ msg. t = [ERead fd msg; EWrite fd msg]

18

Verifying Echo

F★ can prove this automatically.

let echo (fd:file_descr) :
 IO unit
 (requires λ h → is_open fd h)
 (ensures λ h r t → Ǝ msg. t = [ERead fd msg; EWrite fd msg]) =
 let msg = read fd in
 write fd msg

How effects work in F★

19

Dijkstra monads

D (a : Type) (w : W a) : Type

20

(Swamy et al. PLDI 2013)

Dijkstra monads

D (a : Type) (w : W a) : Type

21

(Swamy et al. PLDI 2013)

our specification monad for IO

pre = event★ → prop
post a = event★ → a → prop

W a = post a → pre

predicate transformer that maps
post-conditions to pre-conditions

event★ - type of finite traces

Dijkstra monads

D (a : Type) (w : W a) : Type

returnD (x : a) : D a (returnW x)

22

(Swamy et al. PLDI 2013)

Dijkstra monads

D (a : Type) (w : W a) : Type

returnD (x : a) : D a (returnW x)

bindD (w : W a) (wf : a → W b) ... : D b (bindW w wf)

23

(Swamy et al. PLDI 2013)

Dijkstra monads

D (a : Type) (w : W a) : Type

returnD (x : a) : D a (returnW x)

bindD (w : W a) (wf : a → W b) ... : D b (bindW w wf)

actD ... : D a (actW ...)

24

(Swamy et al. PLDI 2013)

Dijkstra monads

D (a : Type) (w : W a) : Type

returnD (x : a) : D a (returnW x)

bindD (w : W a) (wf : a → W b) ... : D b (bindW w wf)

actD ... : D a (actW ...)

25

(Swamy et al. PLDI 2013)

val read : (fd:file_descr) → IO string
 (requires (λ history → is_open fd history))
 (ensures (λ history msg lt → lt = [ERead fd msg]))

let echo (fd:file_descr) :
 IO unit
 (requires λ h → is_open fd h)
 (ensures λ h r t → Ǝ msg. t = [ERead fd msg; EWrite fd msg]) =
 let msg = read fd in
 write fd msg

Back to our example

 bindW (readW fd) (writeW fd) ≤ wp

26

let echo (fd:file_descr) :
 IO unit
 (requires λ h → is_open fd h)
 (ensures λ h r t → Ǝ msg. t = [ERead fd msg; EWrite fd msg]) =
 let msg = read fd in
 write fd msg

Back to our example

 bindW (readW fd) (writeW fd) ≤ wp

27

Defining IO effect for terminating programs

28

Dijkstra monads for all

θ
M W

29

(Maillard et al. ICFP 2019)

computation monad
monad morphism (semantic

interpretation)

D a (w : W a) = { c : M a | θ c ≤ w }

Our IO effect for termination

θ
Free Wree

30

computation monad
monad morphism (semantic

interpretation)

IO a (w : W a) = { c : Free a | θ c ≤ w }

Our IO effect for termination

θ
Free Wree

31

computation monad
monad morphism (semantic

interpretation)

IO a (w : W a) = { c : Free a | θ c ≤ w }

Free #sig a =
| Call : (o : sig.act) → sig.in o → (sig.out o → Free a) → Free a
| Return : a → Free a

Our IO effect for termination

θ
Free Wree

32

computation monad
monad morphism (semantic

interpretation)

IO a (w : W a) = { c : Free a | θ c ≤ w }

θ c =
 match c with
 | Return x → returnW x
 | Call act args fnc →
 bindW (actW args) (λ r → θ (fnc r))

Using IO, we verified the terminating parts of
the Web Server

loop

loop_body

request_handler

33

Web Server

Terminating : IO

Program example: Forever Echo

let loop_echo fd = repeat echo fd

34

● F★ does not support co-induction.

Program example: Forever Echo

let loop_echo fd = repeat echo fd

35

● F★ does not support co-induction.
● This is what we would like, but can’t write:

let rec iter f i =

 match f i with

 | Inl j → iter f j

 | Inr x → x

ML

Program example: Forever Echo

let loop_echo fd = repeat echo fd

36

Free a = | …
| Iter : f:(b → Free (b + c)) → i : b → (c → Free a) → Free a

● F★ does not support co-induction.
● This is what we would like, but can’t write:

Add extra constructor to Free monad corresponding to unbounded iteration.

let rec iter f i =

 match f i with

 | Inl j → iter f j

 | Inr x → x

repeat can be written using iter.

ML

IODiv for non-termination

specification monad

pre = event★ → prop
post A = ((event★ × A) + eventω) → prop

type of infinite traces
(stream of events)

37

eventω

IODiv - monad morphism

θ c =
 match c with
 | …
 | Iter f i fnc → bindW (iterW (fun j → θ (f j)) i)
 | Iter f i fnc → bindW (λ r → θ (fnc r))

38

θ c =
 match c with
 | …
 | Iter f i fnc → bindW (iterW (fun j → θ (f j)) i)
 | Iter f i fnc → bindW (λ r → θ (fnc r))

IODiv - monad morphism

39

iterW

IODiv - monad morphism

θ c =
 match c with
 | …
 | Iter f i fnc → bindW (iterW (fun j → θ (f j)) i)
 | Iter f i fnc → bindW (λ r → θ (fnc r))

iterW w i ≈
 match w i with
 | Inl j → bindW tauW (iterW w j)
 | Inr x → returnW x

40

iterW

IODiv - monad morphism

θ c =
 match c with
 | …
 | Iter f i fnc → bindW (iterW (fun j → θ (f j)) i)
 | Iter f i fnc → bindW (λ r → θ (fnc r))

iterW w i ≈
 match w i with
 | Inl j → bindW tauW (iterW w j)
 | Inr x → returnW x

41

iterW

ERead fd
1
 m

1
; EWrite (fd,m

1
); Tau; ERead fd m

2
; EWrite (fd,m

2
); Tau; …

tauW

Tau is a silent step (Dijkstra Monads for Ever, ITrees)

let loop_echo (fd:file_descr) :
 IODiv unit
 (requires λ h → is_open client h)
 (ensures λ h run → diverges run ⋀
 run ≈ [ERead fd m; EWrite (fd,m); ERead fd m;...]) =
 repeat echo fd

42

This does not verify automatically yet.

Take advantage of SMT automation

let loop_echo (fd:file_descr) :
 IODiv unit
 (requires λ h → is_open client h)
 (ensures λ h run → diverges run ⋀
 run ≈ [ERead fd m; EWrite (fd,m); ERead fd m;...]) =
 repeat echo fd

43

This does not verify automatically yet.

We actively tune the verification condition to take advantage of the SMT:

● Keeping the history backwards simplifies verification of pre-conditions;
● Making definitions abstract for the SMT;
● Changing bindW simplified by a factor of 4 the verification condition.

Take advantage of SMT automation

We want to use IODiv to verify only
non-terminating parts

loop

loop_body

request_handler

44

Web Server

Terminating : IO

Non-terminating : IODiv

IODiv is more complex for the SMT than IO

Sub-effecting

IO

IODiv

lift

45

Sub-effecting

IO

IODiv

lift

let loop_echo (fd:file_descr) : IODiv unit …
 repeat echo fd

46

Sub-effecting

IO

IODiv

lift

let loop_echo (fd:file_descr) : IODiv unit …
 repeat echo fd

47

Sub-effecting

IO

IODiv

lift

let loop_echo (fd:file_descr) : IODiv unit …
 repeat echo fd

48

49

Conclusion
● Dijkstra monads with Free monads seem fit for the task;
● F★ hides the complexity of the monads;
● Tuning the verification conditions is necessary;
● Sub-effecting is important to alleviate the proof burden;
● There is HOPE this can be practical.

Ongoing and future work
● Tune verification conditions to take advantage of automation;
● Study how to verify properties of infinite runs such as liveness;
● Case study: verify a stateless web server that serves files over HTTP;
● Add State and Exceptions effects;
● Part of secure F★ - ML interoperability line of work;
● Hiring! My team is looking for a PostDoc to work on formal verification!

Conclusion
● Dijkstra monads with Free monads seem fit for the task;
● F★ hides the complexity of the monads;
● Tuning the verification conditions is necessary;
● Sub-effecting is important to alleviate the proof burden;
● There is HOPE this can be practical.

